1. Pendahuluan
Content-based image retrieval (CBIR), adalah suatu aplikasi computer vision yang digunakan untuk melakukan pencarian gambar-gambar digital pada suatu database. Yang dimaksud dengan "Content-based" di sini adalah: bahwa yang dianalisa dalam proses pencarian itu adalah actual contents (kandungan aktual) sebuah gambar. Istilah content pada konteks ini merujuk pada warna, bentuk, tekstur, atau informasi lain yang didapatkan dari gambar tersebut.
Proses umum dari CBIR adalah pada gambar yang menjadi query dilakukan proses ekstraksi feature (image contents), begitu halnya dengan gambar yang ada pada
sekumpulan gambar juga dilakukan proses seperti pada gambar query. Parameter feature gambar yang dapat digunakan untuk retrieval pada system ini dapat berupa histogram, susunan warna, teksture, dan shape, tipe spesifik dari obyek, tipe event tertentu, nama individu, lokasi, emosi
Citra
Secara harafiah, citra (image) adalah gambar pada bidang dwimatra (dua dimensi). Gambar 1.1 adalah citra seorang gadis model yang bernama Lena, dan gambar di sebelah kanannya adalah citra kapal di sebuah pelabuhan. Ditinjau dari sudut pandang matematis, citra merupakan fungsi menerus (continue) dari intensitas cahaya pada bidang dwimatra. Sumber cahaya menerangi objek, objek memantulkan kembali sebagian dari berkas cahaya tersebut. Pantulan cahaya ini ditangkap oleh oleh alat-alat optik, misalnya mata pada manusia, kamera, pemindai (scanner), dan sebagainya, sehingga bayangan objek yang disebut citra tersebut terekam.
Citra sebagai keluaran dari suatu sistem perekaman data dapat bersifat [MUR92]:
1. optik berupa foto,
2. analog berupa sinyal video seperti gambar pada monitor televisi,
3. digital yang dapat langsung disimpan pada suatu pita magnetik.
Citra yang dimaksudkan di dalam keseluruhan isi buku ini adalah “citra diam” (still images). Citra diam adalah citra tunggal yang tidak bergerak
Citra bergerak (moving images) adalah rangkaian citra diam yang ditampilkan secara beruntun (sekuensial) sehingga memberi kesan pada mata kita sebagai gambar yang bergerak. Setiap citra di dalam rangkaian itu disebut frame. Gambar-gambar yang tampak pada film layar lebar atau televisi pada hakikatnya terdiri atas ratusan sampai ribuan frame.
1.2 Definisi Pengolahan Citra
Meskipun sebuah citra kaya informasi, namun seringkali citra yang kita miliki mengalami penurunan mutu (degradasi), misalnya mengandung cacat atau derau (noise), warnanya terlalu kontras, kurang tajam, kabur (blurring), dan sebagainya. Tentu saja citra semacam ini menjadi lebih sulit diinterpretasi karena informasi yang disampaikan oleh citra tersebut menjadi berkurang.
Agar citra yang mengalami gangguan mudah diinterpretasi (baik oleh manusia maupun mesin), maka citra tersebut perlu dimanipulasi menjadi citra lain yang kualitasnya lebih baik. Bidang studi yang menyangkut hal ini adalahpengolahan citra(image processing).
Pengolahan citra adalah pemrosesan citra, khususnya dengan menggunakan komputer, menjadi citra yang kualitasnya lebih baik.
Umumnya, operasi-operasi pada pengolahan citra diterapkan pada citra bila [JAI89]:
1. perbaikan atau memodifikasi citra perlu dilakukan untuk meningkatkan
kualitas penampakan atau untuk menonjolkan beberapa aspek informasi yang
terkandung di dalam citra,
2. elemen di dalam citra perlu dikelompokkan, dicocokkan, atau diukur,
3. sebagian citra perlu digabung dengan bagian citra yang lain.
Di dalam bidang komputer, sebenarnya ada tiga bidang studi yang berkaitan
dengan data citra, namun tujuan ketiganya berbeda, yaitu:
1. Grafika Komputer (computer graphics).
2. Pengolahan Citra (image processing).
3. Pengenalan Pola (pattern recognition/image interpretation).
Grafika Komputer bertujuan menghasilkan citra (lebih tepat disebut grafik atau
picture) dengan primitif-primitif geometri seperti garis, lingkaran, dan
sebagainya. Primitif-primitif geometri tersebut memerlukan data deskriptif untuk
melukis elemen-elemen gambar. Contoh data deskriptif adalah koordinat titik,
panjang garis, jari-jari lingkaran, tebal garis, warna, dan sebagainya. Grafika
komputer memainkan peranan penting dalam visualisasi dan virtual reality.
Contoh grafika komputer misalnya menggambar sebuah ‘rumah’ yang dibentuk
oleh garis-garis lurus, dengan data masukan berupa koordinat awal dan koordinat
ujung garis .
Pengolahan Citra bertujuan memperbaiki kualitas citra agar mudah diinterpretasi
oleh manusia atau mesin (dalam hal ini komputer). Teknik-teknik pengolahan
citra mentransformasikan citra menjadi citra lain. Jadi, masukannya adalah citra
dan keluarannya juga citra, namun citra keluaran mempunyai kualitas lebih baik
daripada citra masukan. Termasuk ke dalam bidang ini juga adalah pemampatan
citra (image compression).
Contoh pengenalan pola misalnya citra pada gambar adalah tulisan tangan
yang digunakan sebagai data masukan untuk mengenali karakter ‘A’. Dengan
menggunakan suatu algoritma pengenalan pola, diharapkan komputer dapat
mengenali bahwa karakter tersebut adalah ‘A’.
1.3 Computer Vision dan Hubungannya dengan
Pengolahan Citra
Terminologi lain yang berkaitan erat dengan pengolahan citra adalah computer
visionatau machine vision. Pada hakikatnya, computer vision mencoba meniru
cara kerja sistem visual manusia (human vision). Human vision sesungguhnya
sangat kompleks. Manusia melihat objek dengan indera penglihatan (mata), lalu
citra objek diteruskan ke otak untuk diinterpretasi sehingga manusia mengerti
objek apa yang tampak dalam pandangan matanya. Hasil interpretasi ini mungkin
digunakan untuk pengambilan keputusan (misalnya menghindar kalau melihat
mobil melaju di depan).
Computer vision merupakan proses otomatis yang mengintegrasikan sejumlah
besar proses untuk persepsi visual, seperti akuisisi citra, pengolahan citra,
klasifikasi, pengenalan (recognition), dan membuat keputusan.
Computer vision terdiri dari teknik-teknik untuk mengestimasi ciri-ciri objek di
dalam citra, pengukuran ciri yang berkaitan dengan geometri objek, dan
menginterpretasi informasi geometri tersebut. Mungkin berguna bagi anda untuk
mengingat persamaan [JAI95] berikut:
Vision = Geometry + Measurement + Interpretation (1.1)
Proses-proses di dalam computer vision dapat dibagi menjadi tiga aktivitas:
1. Memperoleh atau mengakuisisi citra digital.
2. Melakukan teknik komputasi untuk memperoses atau memodifikasi data citra
(operasi-operasi pengolahan citra).
3. Menganalisis dan menginterpretasi citra dan menggunakan hasil pemrosesan
untuk tujuan tertentu, misalnya memandu robot, mengontrol peralatan,
memantau proses manufaktur, dan lain -lain.
Pengolahan Citra Digital
Pengolahan citra dan pengenalan pola merupakan bagian dari computer vision. Pengolahan citra merupakan proses awal (preprocessing) pada computer vision, sedangkan pengenalan pola merupakan proses untuk menginterpretasi citra. Teknik-teknik di dalam pengenalan pola memainkan peranan penting dalam computer vision untuk mengenali objek. Jika dihubungkan dengan grafika komputer, maka computer vision merupakan kebalikannya. Grafika komputer membentuk (sintesis) citra, sedangkan computer visionmengoraknya (analisis). Pada masa awal kedua bidang ini, tidak ada hubungan antara keduanya, tetapi beberapa tahun belakangan kedua bidang
tersebut berkembang semakin dekat. Computer vision menggunakan representasi
kurva dan permukaan dan beberapa teknik lain dari grafika komputer, sedangkan
grafika komputer menggunakan teknik -teknik di dalam computer vision untuk
memuat citra realistik (virtual reality) [JAI95].