Cari Blog Ini

Selasa, 30 Mei 2017

Bioinformatika

Pengertian Bioinformatika

Bioinformatika (bioinformatics) adalah ilmu yang mempelajari penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi.

Sejarah Bioinformatika

Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.
Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Manfaat Bioinformatika

Bioinformatika berperan sebagai penunjang suatu proses penelitian sampai akhirnya menjadi produk yang dapat digunakan khalayak ramai untuk kepentingan tertentu. Bioinformatika menyediakan tools yang dapat dipakai untuk memahami fenomena biologis secara molekuler. Keberhasilan memetakan genom manusia mendorong berbagai penelitian biomedis untuk mempelajari dan memahami penyakit sampai tingkat gen dan molekuler sehingga memungkinkan ditemukannya pengobatan klinis yang lebih baik, target obat baru, dan pencegahan berbagai penyakit yang sampai saat ini belum ada obatnya.

Contoh-contoh Penggunaan Bioinformatika :

- Bioinformatika dalam bidang klinis

Bioinformatika dalam bidang klinis sring juga disebut sebagai informatika klinis (clinical informatics). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record(EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR telah diaplikasikan pada berbagai macam penyakit seperti data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung, dll.

- Bioinformatika untuk identifikasi Agent penyakit baru

Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi agent penyakit yang belum dikenal penyebabnya. Misalnya saja seperti SARS (Severe Acute Respiratory Syndrome) yang dulu pernah berkembang.

- Bioinformatika untuk diagnose penyakit baru

Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk pemberian obat dan perawatan yang tepat bagi pasien. Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR).

- Bioinformatika untuk penemuan obat

Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawa yang dapat menekan perkembangbiakan suatu agent penyebab penyakit. Karena perkembangbiakan agent tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatu agent.
Trend Bioinformatika Dunia
Ledakan data/informasi biologi itu yang mendorong lahirnya Bioinformatika. Karena Bioinformatika adalah bidang yang relatif baru, masih banyak kesalahpahaman mengenai definisinya. Komputer sudah lama digunakan untuk menganalisa data biologi, misalnya terhadap data-data kristalografi sinar X dan NMR (Nuclear Magnetic Resonance) dalam melakukan penghitungan transformasi Fourier, dsb. Bidang ini disebut sebagai Biologi Komputasi. Bioinformatika muncul atas desakan kebutuhan untuk mengumpulkan, menyimpan dan menganalisa data-data biologis dari database DNA, RNAmaupun protein tadi. Untuk mewadahinya beberapa jurnal baru bermunculan (misalnya Applied Bioinformatics), atau berubah nama seperti Computer Applications in the Biosciences (CABIOS) menjadi BIOInformatic yang menjadi official journal dari International Society for Computational Biology (ICSB) (nama himpunan tidak ikut berubah). Beberapa topik utama dalam Bioinformatika dijelaskan di bawah ini.

Keberadaan database adalah syarat utama dalam analisa Bioinformatika. Database informasi dasar telah tersedia saat ini. Untuk database DNA yang utama adalah GenBank di AS. Sementara itu bagi protein, databasenya dapat ditemukan di Swiss-Prot (Swiss) untuk sekuen asam aminonya dan di Protein Data Bank (PDB) (AS) untuk struktur 3D-nya. Data yang berada dalam database itu hanya kumpulan/arsip data yang biasanya dikoleksi secara sukarela oleh para peneliti, namun saat ini banyak jurnal atau lembaga pemberi dana penelitian mewajibkan penyimpanan dalam database. Trend yang ada dalam pembuatan database saat ini adalah isinya yang makin spesialis.

Setelah informasi terkumpul dalam database, langkah berikutnya adalah menganalisa data. Pencarian database umumnya berdasar hasil alignment/pensejajaran sekuen, baik sekuen DNA maupun protein. Metode ini digunakan berdasar kenyataan bahwa sekuen DNA/protein bisa berbeda sedikit tetapi memiliki fungsi yang sama. Misalnya protein hemoglobin dari manusia hanya sedikit berbeda dengan yang berasal dari ikan paus. Kegunaan dari pencarian ini adalah ketika mendapatkan suatu sekuen DNA/protein yang belum diketahui fungsinya maka dengan membandingkannya dengan yang ada dalam database bisa diperkirakan fungsi daripadanya. Algoritma untuk pattern recognition seperti Neural Network, Genetic Algorithm dll telah dipakai dengan sukses untuk pencarian database ini. Salah satu perangkat lunak pencari database yang paling berhasil dan bisa dikatakan menjadi standar sekarang adalah BLAST (Basic Local Alignment Search Tool).

Bidang-bidang terkait Bioinformatika

  • Biophysics

Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Biophysics adalah sebuah bidang yang mengaplikasikan teknik- teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society ). Disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur.

  • Computational Biology

Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.

  • Medical Informatics

Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri dan kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit” –yaitu informasi dari sistem-sistem superselular, tepat pada level populasi— di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular

  • Cheminformatics

Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini. Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin.

  • Genomics

Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom.

  • Proteomics

Proteomics adalah Ilmu yang mempelajari proteome. Proteomics saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari protein-protein dan kompleks-kompleks orde tingkat tinggi dari protein

  • Pharmacogenomics

Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker).

  • Pharmacogenetics

Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat; sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisimereka dan ada juga yang mendapatkan efek samping atau reaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasihubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan.

Sumber :

http://ianspace.wordpress.com/2011/05/01/bioinformatika/
http://nindyastuti52.wordpress.com/2011/04/23/bioinformatika/
http://zaharaonly.blogspot.com/2011/04/sekilas-tentang-bioinformatika.html


Parallel Processing

Parallel Processing

Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan.
Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan.

Tujuan Parallel Processing

Tujuan utama dari pemrosesan paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan.

Komputasi Paralel 

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan.
Biasanya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak.

Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. 
Pemrograman Paralel sendiri adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam satu jaringan komputer, biasanya disebut sistem terdistribusi. Bahasa pemrograman yang populer digunakan dalam pemrograman paralel adalah MPI (Message Passing Interface) dan PVM (Parallel Virtual Machine).

Yang perlu diingat adalah komputasi paralel berbeda dengan multitasking. Pengertian multitasking adalah komputer dengan processor tunggal mengeksekusi beberapa tugas secara bersamaan. Walaupun beberapa orang yang bergelut di bidang sistem operasi beranggapan bahwa komputer tunggal tidak bisa melakukan beberapa pekerjaan sekaligus, melainkan proses penjadwalan yang berlakukan pada sistem operasi membuat komputer seperti mengerjakan tugas secara bersamaan. Sedangkan komputasi paralel sudah dijelaskan sebelumnya, bahwa komputasi paralel menggunakan beberapa processor atau komputer. Selain itu komputasi paralel tidak menggunakan arsitektur Von Neumann.
Untuk lebih memperjelas lebih dalam mengenai perbedaan komputasi tunggal (menggunakan 1 processor) dengan komputasi paralel (menggunakan beberapa processor), maka kita harus mengetahui terlebih dahulu pengertian mengenai model dari komputasi. Ada 4 model komputasi yang digunakan, yaitu:
  • SIMD
  • SIMD
  • MISD
  • MIMD
  • SISD


Yang merupakan singkatan dari Single Instruction, Single Data adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.

SIMD

Yang merupakan singkatan dari Single Instruction, Multiple Data. SIMD menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).

MISD

Yang merupakan singkatan dari Multiple Instruction, Single Data. MISD menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Untuk contoh, kita bisa menggunakan kasus yang sama pada contoh model SIMD namun cara penyelesaian yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model

MISD.

Komputer jenis ini memiliki n unit pemroses yang masing-masing menerima dan mengoperasikan instruksi yang berbeda terhadap aliran data yang sama, dikarenakan setiap unit pemroses memiliki unit pengendali yang berbeda. Keluaran dari satu pemroses menjadi masukan bagi pemroses berikutnya. Belum ada perwujudan nyata dari komputer jenis ini kecuali dalam bentuk prototipe untuk penelitian. 

MIMD

Yang merupakan singkatan dari Multiple Instruction, Multiple Data. MIMD menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.

Penyelesaian Sebuah Masalah Pada Komputasi Paralel

Dari perbedaan kedua gambar di atas, kita dapat menyimpulkan bahwa kinerja komputasi paralel lebih efektif dan dapat menghemat waktu untuk pemrosesan data yang banyak daripada komputasi tunggal.
Dari penjelasan-penjelasan di atas, kita bisa mendapatkan jawaban mengapa dan kapan kita perlu menggunakan komputasi paralel. Jawabannya adalah karena komputasi paralel jauh lebih menghemat waktu dan sangat efektif ketika kita harus mengolah data dalam jumlah yang besar. Namun keefektifan akan hilang ketika kita hanya mengolah data dalam jumlah yang kecil, karena data dengan jumlah kecil atau sedikit lebih efektif jika kita menggunakan komputasi tunggal.

Komputasi paralel membutuhkan :
· algoritma
· bahasa pemrograman
· compiler

Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU.


Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi.

*
Message Passing Interface (MPI)

MPI adalah sebuah standard pemrograman yang memungkinkan pemrogram
untuk membuat sebuah aplikasi yang dapat dijalankan secara paralel. 
MPI menyediakan fungsi-fungsi untuk menukarkan
antar pesan. Kegunaan MPI yang lain adalah
1. menulis kode paralel secara portable
2. mendapatkan performa yang tinggi dalam pemrograman paralel, dan
3. menghadapi permasalahan yang melibatkan hubungan data irregular atau dinamis yang tidak 
begitu cocok dengan model data paralel. 

*
Message Passing Interface (MPI)

MPI adalah sebuah standard pemrograman yang memungkinkan pemrogram
untuk membuat sebuah aplikasi yang dapat dijalankan secara paralel. 
MPI menyediakan fungsi-fungsi untuk menukarkan
antar pesan. Kegunaan MPI yang lain adalah
1. menulis kode paralel secara portable
2. mendapatkan performa yang tinggi dalam pemrograman paralel, dan
3. menghadapi permasalahan yang melibatkan hubungan data irregular atau dinamis yang tidak 
begitu cocok dengan model data paralel.

Hubungan antara Komputasi Modern dengan Paralel Processing

Hubungan antara komputasi modern dan parallel processing sangat berkaitan, karena penggunaan komputer saat ini atau komputasi dianggap lebih cepat dibandingkan dengan penyelesaian masalah secara manual. Dengan begitu peningkatan kinerja atau proses komputasi semakin diterapkan, dan salah satu caranya adalah dengan meningkatkan kecepatan perangkat keras. Dimana komponen utama dalam perangkat keras komputer adalah processor. Sedangkan parallel processing adalah penggunaan beberapa processor (multiprocessor atau arsitektur komputer dengan banyak processor) agar kinerja computer semakin cepat.

Kinerja komputasi dengan menggunakan paralel processing itu menggunakan dan memanfaatkan beberapa komputer atau CPU untuk menemukan suatu pemecahan masalah dari masalah yang ada. Sehingga dapat diselesaikan dengan cepat daripada menggunakan satu komputer saja. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya. Tetapi ini untuk masalah yang besar saja, komputasi yang masalah kecil, lebih murah menggunakan satu CPU saja.


Sumber:

Koenig, Herbert. (1998). Modern Computational Methods. CRC Press


Pengertian Dan Sejarah Komputasi Modern


Pengertian Komputasi

Komputasi diartikan sebagai cara untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Selama ribuan tahun, perhitungan dan komputasi umumnya dilakukan dengan menggunakan pena dan kertas, atau kapur dan batu tulis, atau dikerjakan secara mental, kadang-kadang dengan bantuan suatu tabel. Pada zaman sekarang ini, kebanyakan komputasi telah dilakukan dengan menggunakan komputer. Secara umum iIlmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan praktis, biasanya berupa penerapan simulasi komputer atau berbagai bentuk komputasi lainnya untuk menyelesaikan masalah-masalah dalam berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar dalam ilmu. Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut.

 Pengertian Komputasi Modern

Komputasi modern adalah sebuah konsep sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory, memory disini bisa juga dari memory komputer. Oleh karena pada saat ini kita melakukan komputasi menggunakan komputer maka bisa dibilang komputer merupakan sebuah komputasi modern. Konsep ini pertama kali digagasi oleh John Von Neumann (1903-1957). Beliau adalah ilmuan yang meletakkan dasar-dasar komputer modern. Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann memberikan berbagai sumbangsih dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer yang di salurkan melalui karya-karyanya . Beliau juga merupakan salah satu ilmuwan yang terkait dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.
Dalam kerjanya komputasi modern menghitung dan mencari solusi dari masalah yang ada, dan perhitungan yang dilakukan itu meliputi:

Akurasi (big, Floating point)
Kecepatan (dalam satuan Hz)
Problem Volume Besar (Down Sizzing atau pararel)
Modeling (NN & GA)
Kompleksitas (Menggunakan Teori big O)

 Jenis-jenis Komputasi Modern

Komputasi modern terbagi tiga macam, yaitu komputasi mobile (bergerak), komputasi grid, dan komputasi cloud (awan). Penjelasan lebih lanjut dari jenis-jenis komputasi modern sebagai berikut :

Mobile computing

Mobile computing atau komputasi bergerak memiliki beberapa penjelasan, salah satunya komputasi bergerak merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel dan mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel. Contoh dari perangkat komputasi bergerak seperti GPS, juga tipe dari komputasi bergerak seperti smart phone, dan lain sebagainya.

Grid computing

Komputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar. Ada beberapa daftar yang dapat dugunakan untuk mengenali sistem komputasi grid, adalah :
Sistem untuk koordinat sumber daya komputasi tidak dibawah kendali pusat.
Sistem menggunakan standard dan protocol yang terbuka.
Sistem mencoba mencapai kualitas pelayanan yang canggih, yang lebih baik diatas kualitas komponen individu pelayanan komputasi grid.

Cloud computing

Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet. Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.
Adapun perbedaan antara komputasi mobile, komputasi grid dan komputasi cloud, dapat dilihat penjelasannya dibawah ini :

1.Komputasi mobile menggunakan teknologi komputer yang bekerja seperti handphone, sedangkan komputasi grid dan cloud menggunakan komputer.
2.Biaya untuk tenaga komputasi mobile lebih mahal dibandingkan dengan komputasi grid dan cloud.
3.Komputasi mobile tidak membutuhkan tempat dan mudah dibawa kemana-mana, sedangkan grid dan cloud membutuhkan tempat yang khusus.
4.Untuk komputasi mobile proses tergantung si pengguna, komputasi grid proses tergantung pengguna mendapatkan server atau tidak, dan komputasi cloud prosesnya membutuhkan jaringan internet sebagai penghubungnya.

 Sejarah Komputasi Modern

Kata  “komputer” pertama kali pada tahun 1613, hal ini mengacu pada perhitungan aritmatika dan kata “komputer” digunakan dalam pengertian itu sampai pertengahan abad ke-20. Dari akhir abad ke-19 dan seterusnya. Berkembanganya komputer akhirnya makna komputer menjadi sebuah mesin yang melakukan komputasi.
Sejarah komputer modern dimulai dengan dua teknologi yang terpisah- perhitungan otomatis dan dapat di program-tapi tidak ada satu perangkat pun yang dapat dikatakan sebagai komputer, karena sebagian penerapan yang tidak konsisten istilah tersebut. Contoh-contoh awal perangkat penghitung mekanis termasuk sempoa (yang berasal dari sekitar 150-100 SM).  Seorang pahlawan dari Alexandria (sekitar 10-70 AD) membangun sebuah teater mekanis yang diadakan bermain berlangsung 10 menit dan dioperasikan oleh sebuah sistem yang kompleks dengan tali dan drum yang dipakai sebagai sarana untuk memutuskan bagian dari mekanisme. Ini adalah inti dari programmability.
Salah satu tokoh yang sangat mempengaruhi perkembangan komputasi modern adalah John von Neumann (1903-1957), Beliau adalah ilmuan yang meletakkan dasar-dasar komputer modern.Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann memberikan berbagai sumbangsih dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer  yang di salurkan melalui karya-karyanya . Beliau juga merupakan salah satu ilmuwan yang terkait dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu.
Sejarah singkat dari perjalanan hidup dari Von Neumann , dilahirkan di Budapest, Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit.Nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann. Pada saat Max Neumann memperoleh gelar, maka namanya berubah menjadi Von Neumann. Setelah bergelar doktor dalam ilmu hukum, dia menjadi pengacara untuk sebuah bank. Pada tahun 1903, Budapest merupakan  tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi.
Von Neumann belajar berbagai tempat dan beberapa tempatnya di Berlin dan Zurich. Di tempat itu beliau mendapatkan diploma pada bidang teknik kimia pada tahun 1926. Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Keahlian Von Neumann terletak pada bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam bidang matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.
Beliau pernah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton pada saat yang bersamaan Von Neumann menjadi salah satu pendiri Institute for Advanced Studies.
Von Neumann sangat tertarik pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Von Neumann menjadi seorang konsultan pada pengembangan komputer ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah seperangkat komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Sumber :
https://id.wikipedia.org/wiki/Komputasi
http://kiki1111.wordpress.com/2011/02/28/sejarah-komputasi-modern/


Senin, 01 Mei 2017

Komputasi Modern Dibidang Kesehatan

Pengertian Komputasi

Definisi dari komputasi adalah sebuah istilah umum untuk segala jenis pemrosesan informasi untuk menemukan pemecahan masalah dari data input dengan menggunakan suatu algoritma. Komputasi merupakan sebuah subjek dari computer sains, yang menganalisa apa yang bisa maupun tidak bisa dilakukan secara komputasi. Hal ini ialah apa yang disebut dengan teori komputasi, suatu sub-bidang dari ilmu computer dan matematika.

Penerapan Komputasi Modern dalam bidang kesehatan

Salah satu penerapan komputasi modern adalah bioinformatika. Bioinformatika adalah penerapan teknik komputasional untuk mengelola daln menganalisis informasi biologis. Istilah bioinformatika nulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. namun, penerapan bidang-bidang dalam bioinformatika sudah dilakukan sejak tahun 1960-an.
Ilmu bioinformatika lahir atas inidiatif para ahli komputer berdasarkan artificial intellingence. mereka berpikir bahwa semua gejala yang ada di alam ini dapat dibuat secara artificial melalui kunci [enentu tindak gejala alam tersebut, yaitu gen yang meliputi DNA dan RNA. Bioinformatika ini penting untuk manajemen data-data dari dunia biologi dan kedokteran modern.

Bidang-bidang yang terkait dengan Bioinformatika

Biophysics:Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society).

Computational Biology: Computational biology merupakan bagian dari Bioinformatika yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biologyadalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel.

Medical Informatics: Medical informatics adalah sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.

Cheminformatics: Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference).

Genomics: Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih.

Mathematical Biology: Mathematical biology menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware.
Proteomics: Proteomics berkaitan dengan studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri. Yaitu: “sebuah antarmuka antara biokimia protein dengan biologi molekul”.

Pharmacogenomics: Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat.
Pharmacogenetics: Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik atau Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik.

Contoh-contohnya:

Bioinformatika dalam bidang klinis. Aplikasi informatika ini berbentuk data-data mengenai informasi klinis dari seorang pasien seperti data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung dan lain-lain

Bioinformatika untuk identifikasi agent penyakit baru. Aplikasi ini digunakan untuk mendeteksi kemunginan penyakit baru yang akan muncul melalui virus atau media lainnya

Bioinformatika untuk diagnosa penyakit baru. Aplikasi ini digunakan untuk mendiagnosa penyakit apa yang diderita oleh pasien dan untuk mengetahui obat apa yang tepat dan perawatan yang akan diberikan pada pasien

Bioinformatika untuk penemuan obat. Aplikasi ini digunakan untuk menemukan terobosan pada obat dengan kombinasi berbagai senyawa sepert enzim, asam amino dan lain-lain

Saat ini telah ada temuan baru yaitu komputer DNA, yang mampu mendiagnosis penyakit sekaligus memberi obat. Ehud Shapiro beserta timnya dari Institut Sains Weizmann, Rehovot, Israel, telah membuat komputer DNA ultrakecil yang mampu mendiagnosis dan mengobati kanker tertentu. Komponen penyusun komputer DNA adalah materi genetik yang diketahui urutan basanya. Seperti diketahui bahwa urutan gen secara intrinsik mempunyai kemampuan inheren untuk mengolah informasi layaknya komputer.

Oleh karena itu triliunan mesin-mesin biomolekul-yang bekerja dengan ketepatan lebih dari 99,8% itu, dapat dikemas dalam setetes larutan. Komputer DNA-menggunakan untai nukleotida sebagai masukan data, dan molekul biologi aktif sebagai luaran data-dapat menghasilkan sistem kendali logis dari proses-proses biologi. Mesin ini bahkan mampu mengerjakan soal-soal matematika.

Sumber :
https://id.wikipedia.org/wiki/Komputasi
https://www.slideshare.net/aziz_suhendra/komputasi-moderndibidangkesehatan