Cari Blog Ini

Selasa, 30 Mei 2017

Bioinformatika

Pengertian Bioinformatika

Bioinformatika (bioinformatics) adalah ilmu yang mempelajari penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi.

Sejarah Bioinformatika

Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.
Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika.

Manfaat Bioinformatika

Bioinformatika berperan sebagai penunjang suatu proses penelitian sampai akhirnya menjadi produk yang dapat digunakan khalayak ramai untuk kepentingan tertentu. Bioinformatika menyediakan tools yang dapat dipakai untuk memahami fenomena biologis secara molekuler. Keberhasilan memetakan genom manusia mendorong berbagai penelitian biomedis untuk mempelajari dan memahami penyakit sampai tingkat gen dan molekuler sehingga memungkinkan ditemukannya pengobatan klinis yang lebih baik, target obat baru, dan pencegahan berbagai penyakit yang sampai saat ini belum ada obatnya.

Contoh-contoh Penggunaan Bioinformatika :

- Bioinformatika dalam bidang klinis

Bioinformatika dalam bidang klinis sring juga disebut sebagai informatika klinis (clinical informatics). Aplikasi dari informatika klinis ini berbentuk manajemen data-data klinis dari pasien melalui Electrical Medical Record(EMR) yang dikembangkan oleh Clement J. McDonald dari Indiana University School of Medicine pada tahun 1972. McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula (diabetes). Sekarang EMR telah diaplikasikan pada berbagai macam penyakit seperti data analisa diagnosa laboratorium, hasil konsultasi dan saran, foto rontgen, ukuran detak jantung, dll.

- Bioinformatika untuk identifikasi Agent penyakit baru

Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi agent penyakit yang belum dikenal penyebabnya. Misalnya saja seperti SARS (Severe Acute Respiratory Syndrome) yang dulu pernah berkembang.

- Bioinformatika untuk diagnose penyakit baru

Untuk menangani penyakit baru diperlukan diagnosa yang akurat sehingga dapat dibedakan dengan penyakit lain. Diagnosa yang akurat ini sangat diperlukan untuk pemberian obat dan perawatan yang tepat bagi pasien. Ada beberapa cara untuk mendiagnosa suatu penyakit, antara lain: isolasi agent penyebab penyakit tersebut dan analisa morfologinya, deteksi antibodi yang dihasilkan dari infeksi dengan teknik enzyme-linked immunosorbent assay (ELISA), dan deteksi gen dari agent pembawa penyakit tersebut dengan Polymerase Chain Reaction (PCR).

- Bioinformatika untuk penemuan obat

Cara untuk menemukan obat biasanya dilakukan dengan menemukan zat/senyawa yang dapat menekan perkembangbiakan suatu agent penyebab penyakit. Karena perkembangbiakan agent tersebut dipengaruhi oleh banyak faktor, maka faktor-faktor inilah yang dijadikan target. Diantaranya adalah enzim-enzim yang diperlukan untuk perkembangbiakan suatu agent.
Trend Bioinformatika Dunia
Ledakan data/informasi biologi itu yang mendorong lahirnya Bioinformatika. Karena Bioinformatika adalah bidang yang relatif baru, masih banyak kesalahpahaman mengenai definisinya. Komputer sudah lama digunakan untuk menganalisa data biologi, misalnya terhadap data-data kristalografi sinar X dan NMR (Nuclear Magnetic Resonance) dalam melakukan penghitungan transformasi Fourier, dsb. Bidang ini disebut sebagai Biologi Komputasi. Bioinformatika muncul atas desakan kebutuhan untuk mengumpulkan, menyimpan dan menganalisa data-data biologis dari database DNA, RNAmaupun protein tadi. Untuk mewadahinya beberapa jurnal baru bermunculan (misalnya Applied Bioinformatics), atau berubah nama seperti Computer Applications in the Biosciences (CABIOS) menjadi BIOInformatic yang menjadi official journal dari International Society for Computational Biology (ICSB) (nama himpunan tidak ikut berubah). Beberapa topik utama dalam Bioinformatika dijelaskan di bawah ini.

Keberadaan database adalah syarat utama dalam analisa Bioinformatika. Database informasi dasar telah tersedia saat ini. Untuk database DNA yang utama adalah GenBank di AS. Sementara itu bagi protein, databasenya dapat ditemukan di Swiss-Prot (Swiss) untuk sekuen asam aminonya dan di Protein Data Bank (PDB) (AS) untuk struktur 3D-nya. Data yang berada dalam database itu hanya kumpulan/arsip data yang biasanya dikoleksi secara sukarela oleh para peneliti, namun saat ini banyak jurnal atau lembaga pemberi dana penelitian mewajibkan penyimpanan dalam database. Trend yang ada dalam pembuatan database saat ini adalah isinya yang makin spesialis.

Setelah informasi terkumpul dalam database, langkah berikutnya adalah menganalisa data. Pencarian database umumnya berdasar hasil alignment/pensejajaran sekuen, baik sekuen DNA maupun protein. Metode ini digunakan berdasar kenyataan bahwa sekuen DNA/protein bisa berbeda sedikit tetapi memiliki fungsi yang sama. Misalnya protein hemoglobin dari manusia hanya sedikit berbeda dengan yang berasal dari ikan paus. Kegunaan dari pencarian ini adalah ketika mendapatkan suatu sekuen DNA/protein yang belum diketahui fungsinya maka dengan membandingkannya dengan yang ada dalam database bisa diperkirakan fungsi daripadanya. Algoritma untuk pattern recognition seperti Neural Network, Genetic Algorithm dll telah dipakai dengan sukses untuk pencarian database ini. Salah satu perangkat lunak pencari database yang paling berhasil dan bisa dikatakan menjadi standar sekarang adalah BLAST (Basic Local Alignment Search Tool).

Bidang-bidang terkait Bioinformatika

  • Biophysics

Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics. Biophysics adalah sebuah bidang yang mengaplikasikan teknik- teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society ). Disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur.

  • Computational Biology

Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal cara tersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.

  • Medical Informatics

Medical informatics lebih memperhatikan struktur dan algoritma untuk pengolahan data medis, dibandingkan dengan data itu sendiri dan kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih “rumit” –yaitu informasi dari sistem-sistem superselular, tepat pada level populasi— di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular

  • Cheminformatics

Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini. Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin.

  • Genomics

Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom.

  • Proteomics

Proteomics adalah Ilmu yang mempelajari proteome. Proteomics saat ini tidak hanya memperhatikan semua protein di dalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari protein-protein dan kompleks-kompleks orde tingkat tinggi dari protein

  • Pharmacogenomics

Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker).

  • Pharmacogenetics

Tiap individu mempunyai respon yang berbeda-beda terhadap berbagai pengaruh obat; sebagian ada yang positif, sebagian ada yang sedikit perubahan yang tampak pada kondisimereka dan ada juga yang mendapatkan efek samping atau reaksi alergi. Sebagian dari reaksi-reaksi ini diketahui mempunyai dasar genetik. Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasihubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan.

Sumber :

http://ianspace.wordpress.com/2011/05/01/bioinformatika/
http://nindyastuti52.wordpress.com/2011/04/23/bioinformatika/
http://zaharaonly.blogspot.com/2011/04/sekilas-tentang-bioinformatika.html


Tidak ada komentar:

Posting Komentar